The Chinese University of Hong Kong Department of Mathematics MMAT 5340 Probability and Stochastic Analysis

Homework 5: Martingale Convergence and Stopping Times

Due Date: 23:59 pm on Sunday, February 25th, 2024. Please submit your homework on Blackboard

1. Let $(\xi_k)_{k\geq 1}$ be a sequence of independent and identically distributed random variables with standard Gaussian distribution, i.e. $\xi_k \sim \mathcal{N}(0,1)$. We define $X = (X_n)_{n\geq 0}$ as follows:

$$X_0 := 0, \ X_n := \sum_{k=1}^n \frac{1}{k} \xi_k, \text{ for all } n \ge 1.$$

- (a) Prove that X is a martingale.
- (b) Prove that

$$\sup_{n\in\mathbb{N}}\mathbb{E}\big[|X_n|^2\big]<\infty.$$

Hint: You may use the fact that

$$\sum_{k=1}^{\infty} \frac{1}{k^2} < \infty$$

without proof.

- (c) By the convergence theorem of the martingale (Theorem 2.4), we know that $X_n \to X_\infty$ a.s. and in L^2 for some random variable X_∞ as $n \to \infty$.
 - i. Compute the characteristic function ψ_n of X_n , where ψ_n is defined as

$$\psi_n(\theta) := \mathbb{E}\left[e^{i\theta X_n}\right], \ \theta \in \mathbb{R}$$

ii. Compute

$$\psi(\theta) := \lim_{n \to \infty} \psi_n(\theta), \ \theta \in \mathbb{R}.$$

iii. Identify the distribution of X_{∞} .

Hint: ψ is the characteristic function of X_{∞} and the distribution of a random variable is uniquely determined by its characteristic function.

2. Let $(\xi_k)_{k\geq 1}$ be a sequence of independent and identically distributed random variables such that $\mathbb{P}[\xi_k = \pm 1] = \frac{1}{2}$. We define $X = (X_n)_{n\geq 0}$ as follows:

$$\begin{split} X_0 &:= 0, \\ X_n &:= \sum_{k=1}^n 2^{k-1} \xi_k \mathbbm{1}_{\{k \leq \tau\}}, \text{ where } \tau := \inf\{k \in \mathbb{N} : \xi_k = 1\}. \end{split}$$

- (a) Prove that X is a martingale.
- (b) Compute $\mathbb{P}[\tau > n]$ and deduce that $\mathbb{P}[\tau < +\infty] = 1$ **Hint:** $\{\tau > n\} = \{\xi_1 = \cdots = \xi_n = -1\}.$
- (c) Prove that $X_{\tau} = 1$ a.s. **Remark:** It may be worth noting that in this case, we have

$$1 = \mathbb{E}[X_{\tau}] \neq \mathbb{E}[X_0] = 0.$$

(d) Compute $\mathbb{E}[|X_n|]$ and prove that

 $\sup_{n \in \mathbb{N}} \mathbb{E}[|X_n|] < \infty, \text{ and } \lim_{n \to \infty} X_n = X_\tau \text{ a.s.}$

Hint: $\mathbb{E}[|X_n|] = \mathbb{E}[|X_n|\mathbb{1}_{\{\tau > n\}}] + \mathbb{E}[|X_\tau|\mathbb{1}_{\{\tau \le n\}}].$